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In the first two sections of this paper we describe a construction of the com-
pactly supported Daubechies’ wavelets. In the third section we show how a
Discrete Wavelet Transform of a function can be obtained. We end this paper
with some interesting numerical illustrations.

1. WAVELETS WITH FINITELY MANY NON-ZERO FILTERCOEFFICIENTS
In the theory of discrete wavelets the equation

d(z) = V2 Z hn@(22 — n) (1.1)

TL== O

plays a fundamental role. With the farther wavelet ¢, satisfying this equation
we have the accompanying mother wavelet ¢ defined by

)

W) = v2 S (=1)"h1-n0(2z — n). (1.2)

= — 00

In DAUBECHIES [1] for the first time a construction is given of wavelets resulting
in compactly supported orthonormal wavelet bases. See also HEIJMANS [this
volume].

It is not difficult to put conditions on A, of (1.1) in order to obtain compactly
supported functions ¢ and ¥. We only need that just a finite number of {h,,}
are different from zero. In this section we give a proof of this property.

We use the fact that the solution ¢ of equation (1.1) can be constructed by
the following iteration scheme. Let

O | 1 o
no(z) = { SN (1.3)
0 elsewhere.

That is no(x) is the characteristic function of [—3, 3]. Next we define a sequence
of functions n;, [ = 1, 2,..., by writing

m(z) =V2 Y ham-1(2z —n). (1.4)

TL=—0
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Then we have

¢(x) = lim n(z). (1.5)

[ — 00

For a proof of this constructive procedure, which may also be used to draw
pictures of solutions of (1.1), see [1].

Now, let just a finite number of filter coefficients h,, of (1.1) be non-zero.
That is, assume that we have two integer numbers N_, N. and that

n < N_,

hnmo TL>N+.

(1.6)

It is easily verified that the functions 1, defined by (1.3) and (1.4) have compact
support. We have in fact

with , ,
NO,-—-— — T 9 N0+ — ?a
Ny = £(Ni_1_ + N_), Ni+ = 5(Ni—1.+ + Ny).

Thus we have

Ni— = V- as | — oo
Niy — Ny |
and 1t follows that
supp(¢) C [N-, N4, (1.7)
and with (1.2)
supp(¥) C [1(1 = Ny + N_), 3(1+ Ny — N_)] (1.8)

In a recent paper of LEMARIE-RIEUSSET & MALGOUYRES 2] it is proven that
the support of ¢ is indeed a connected interval.

2. DAUBECHIES’ CONSTRUCTION OF COMPACTLY SUPPORTED WAVELETS
In this section we give a few theorems which are relevant in the theory of
compactly supported wavelets. These theorems are proven in 11].

I'HEOREM 1. (Daubechies) Let h,, be a sequence such that
(2) D, [hnlIn|® < oo for some e > 0,

(ZZ) Zn hn-—-Qk:hn--Ql — 6161;

(118) ), hn = V2.

1 .
Suppose also that H(E) =272 h,e™ ¢ can be written as
H(E) =[50+ e )V fae™e], (2.1)

where
(1) 3. | fulln|® < oo for some e > 0,
(v) SUPgeR | D, fre ™8| < 2V -1
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Define

gn = (— 1)"”’}11_”,
-1 H(277¢),
\/l 2 gnd(2r —n).

Then the ¢ (x) = 2“j/2¢5(2“j:1: — k) define a multiresolution analysis, and the
{Y;r} are the associated orthonormal wavelet basss.

The function ¢ denotes the Fourier transform of the function ¢:

3O = [ e
— OO
The function H(&) introduced in this theorem is of fundamental importance

in the theory. Observe that H({) generates the function ;5({ ). So, when H is
known, ¢ and, hence, ¢ can be constructed.

Also, the number N in (2.1) is crucial: when N is large the wavelet has
Interesting properties with respect to approximations with the mother wavelets
{¥jk}-

REMARK. Starting with finitely many A,,, we obtain finitely many f,,, and (i)
and (iv) of Theorem 1 are obviously fulfilled.

EXAMPLES:

1
(1) ho = hy = 7 and H() = 2(1+e™ %)
(2) h0“4\/'2‘7h1_'\{§1h2“4\/‘3h3__4_.2

In the first example the function 5(5 ) can be computed easily. We have

— et
H(€) = H =(1 4 exp(—i277¢)) = 1 T

Thus the farther wavelet ¢(z) and the associated mother wavelet ¢ (x) are the
Haar wavelets:

1 as O < T <
1 asl0O<zxz<1 , _ 2
b(x) = {O elsewhere b(x) = { -1 as g <r <l
0 elqewhere

The first example is special with respect of symmetry because:

THEOREM 2. (Daubechies) The Haar basis (associated to the above example

(1)) is the only orthonormal basis of compactly supported wavelets for which
the associated function ¢ has a symmetry axis.

In [1] a constructive proof of the following theorem is given.
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THEOREM 3. Any trigonometric polynomial H(E), which fulfils the conditions
of Theorem 1, is of the form

H(E) = [3(1+e7)]7Q(e™™),
where N € IN, N > 1, and where () 1s a polynomial such that

N -1 | .
Qe P =3 (N -1+ 3) sin® 1¢ + [sin?™ L] R(L cos )

J=0 J

where R 1s an odd polynomial, with some extra restrictions.

For obtaining the Daubechies’ wavelets, we choose R = 0. Thus for fixed N
the Daubechies’ wavelets correspond to the trigonometric polynomials H(¢) of
minimal degree. With some extra analysis it follows that these special trigono-
metric polynomials have a ()-term of the form

N—1
QN(emig) — Z ‘;Ifn,emiwE with Q0 # 0. (2‘2)
EXAMPLES
(3) Q2(8) = é[l-i-\/g—i—(l——- \/?:)e"zf]
Qs(€) = 3[1 +VI0+ /5 + 2010+ 2(1 — VI0)e ¢

4) +(1 ++10 — V5 + Qﬁ) 6“2":’5]

Let us denote the corresponding ¢, ¥ functions by ¢y, ¥n. The theory of
section 1 gives

supp(¢n) = [0,2N — 1], supp(¥n) = [-N + 1, NJ.

For N = 2 and N = 3 the associated h, can be calculated exactly, and for
N < 10 Daubechies gives the numerical values of the h,, in [1].

When N increases with 1, the number of non-zero h,, increases with 2. And
when NV increases the smoothness of ¢ and ¥ increases:

THEOREM 4. (Daubechies) There exists A > 0 such that, for all N € N, N >
2,
¢’Na ”7/)N & CAN

Daubechies gives some values of A, for which Theorem 4 holds. But a larger
value for which Theorem 4 holds, is due to MEYER [3], it is

4
A~ log(=)/ log 2 ~ 0.3485.
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3. COMPUTING WITH THE COMPACTLY SUPPO RTED DAUBECHIES® WAVELETS

In this section we show how a Discrete Wavelet Transform of a function can be
obtained. We will use the Daubechies’ wavelet ¢y of the previous section, and,
agaln, the associated functions are Qik(x) = 2=/ quN(?“j r — k). A function

- "~

will be represented by a finite signal a = (ag,---,ap—1)7. As an intermediate
expression we introduce A = Z?i_(; ! ajPrj, with M = 25 Then the Discrete
Wavelet Transform of @ appears to be constituted by 2% — 2 coeflicients of the
expansion of A in the orthonormal v,,,, basis.

Now we choose NN fixed, and with the filter-coefficients h,, of ¢ we define
filters HN, GN : 12 —> l2

(Hnya)r = Z hi—2kay, (3.1)
[=—00

(GNA)Kk = Y gi-2kau, (3.2)
[=— o0

with again g, = (—1)"h1_,.
Now we let these filters work on the finite signal a = (ag,---,apm-1)?, with
M even. In matrix-form H 1is

h’() hl h2 vt hQ.N—-l
ho hi . s hon -1

Hy = . (3-3)

ho h

The matrix-form of Gy is the same, with h,, replaced by g¢g,. Filtering with
these -%-M x M —matrices will cause edge eftects for NV > 1. For eliminating
these edge effects, we make these matrices periodic in the following way

ho X hon—1
My = ho hon -1
hon—2 han-1 ho .o+ hon_3
ho Ak hon—1 h hi
(3.4)

with Gn the same as H  with h,, replaced by g,. This is the same as leaving the
filters Hy and Gy unchanged and make the signal a periodic to a [®“-vector.
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T'he total filtering is now

HN Qg
= (3.5)
ON | apr -1
_ - | HN . , .
The matrix [ J 1S orthonormal, i.e.
ON |y
Hn T AT | HNHE HNQ?\}J — Tds 3 6
[QN]M[HNQN]MM ,rgNHE gNgij\; o M - ( )
T'his follows directly from the equations
Z An—okhn_21 = bp, (3.7)
Z hn-—-ngn——Qi — Oa (3'8)

where (3.7) is condition (#7) of Theorem 1, and (3.8) follows from

0 OO
> Rpokgn_o = D < Bk Pon >< Pon, Y1 S=< 1,y >= 0.

We define
Omn(T) =272 (27 "y — n), Vmn(z) =272 (27 " — n), (3.9)

and we choose M = 2% K € IN*. Let A € Vx such that

ap = aro =< A, dpr > . (3.10)

Then we define

A =< A,qﬁ)]{__j,k > d}cj:< A,?,DK.......:,',}C > . (3.11)
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R ..
£ RPN

The Discrete Wayvelet Transformation becomes (for A = 4)

40,0
ai.o
a2 0
a3.0
d4.0
5.0

a6 .0
a7 o
asg o
a9 0
10,0
11,0
a12.0
13,0
a14.,0
a15,0

(3.12)

50, for general K, the Discrete Wavelet Transformation is built up by simple
matrix-operations with orthonormal matrices. The special form of these ma-
trices make these matrix-operations, and the Discrete Wavelet Transform for
general K, easy to program. And the whole process is simple to invert. Notice
that the transformation is a process that transforms a signal of length 2%
a vector of length 2% .

Into

The d;i are some of the coefficients of the expansion of A in the orthonormal

Y basis. The remaining ag -1 and a; g1 are called the "mother-function
coeflicients”.

4. WHAT DO DAUBECHIES’ WAVELETS LOOK LIKE, AND HOW DO THEY
WORK ON SIGNALS?Y
The illustrations in this section are made on a Macintosh-II using a Pascal
program, which is based on the program given in PRESS [4]. In the illustrations,

FIGURE 1. Father (left) and mother wavelet for N = 1, the Haar functions.
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the length of the signals M = 1024. First we show some figures of the ¢on and
YN for some different values of N. Notice that a signal of ¥)» can be obtained
by starting at the right hand side of scheme (3.12) with a vector §, = {63k } 1222,
where 7 € 2,---,1024 is fixed. This follows directly from (3.11). The figures

are shown in Figure 1, 2 and 3.

FIGURE 2. Father (left) and mother wavelet for N = 2.

F'IGURE 3. Father (left) and mother wavelet for N = 6.

Notice that, according to Theorem 2 and 4, the smoothness of the wavelets
Increases with N, and only for N = 1 the ¢nN has a symmetry axis. The
inverse discrete wavelet transform of 010 + 058 is shown in Figure 4.

FIGURE 4. The inverse discrete wavelet transform of 619 + 653 for N = 2.

Since 10 lies early in the hierarchical range 9-16, that wavelet lies on the
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left side of the picture. Since 58 lies in a later (smaller scale) hierarchy, it is a
narrower wavelet.

- ‘ FIGURE 5. The sinus-signal.
The discrete wavelet transforms of the sinus-signal (see Figure 5) are calculated
for N =1 and N = 10. They are shown in Figures 6 and 7.

FIGURE 6. Discrete wavelet transform of the sinus-signal for N = 1.

The amplitudes of the transtorm for NV = 10 are more concentrated at the left
part of the signal then the amplitudes of the transform for NV = 1. This can
be explained by the smoothness of the underlying wavelets. The wavelets for
N = 10 match better to the smooth signal. In other cases, when the original
signal 1s more singular, the wavelets for NV = 1 match better to that signal.

FIGURE 7. Discrete wavelet transform of the sinus-signal for N = 10.
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Now we can truncate these wavelet transforms. For N = 1 there are 18 co-
efficients that have amplitudes larger then 0.05 times the maximum amplitude
of the transform. We set the remaining amplitudes to zero. With this kind
of data-reduction we have to record both the values and the positions of the
non-zero coethicients. Thus in the case of N = 1 we reduce to a vector of length
36. And in the case of N = 10 we reduce to a vector of length 12. The following
two pictures show the result of truncations of the original signal from the two
Inverse discrete wavelet transforms of the truncated vectors.

FIGURE 9. Original signal minus approximation signal for N = 10.

#

So, when we start with a smooth signal, the data-reduction with NV = 10 is
much better.

REMARK It is very important that vectors in wavelet space be truncated ac-
cording to the amplitude of the components, not their position in the vector.

Keeping the first 16 components of the vector would give an extremely poor
approximation to the original signal.
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